带你走进一个不一样的数学世界

我国古代数学名著《孙子算经》载有一道数学问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?”这里的几何指多少的意思。翻译成数学语言就是:求正整数N,使N除以3余2,除以5余3,除以7余2。

如何求符合上述条件的正整数N呢?《孙子算经》给出了一个非常有效的巧妙解法。术曰:“三、三数之剩二,置一百四十;五、五数之剩三,置六十三;七、七数之剩二,置三十,并之,得二百三十三。以二百一十减之,即得。凡三、三数之剩一,则置七十;五、五数之剩一,则置二十一;七、七数之剩一,则置十五。一百六以上,一百五减之,即得。”

过了一千多年,到了十六世纪,数学家程大位在他所著的《算法统宗》里把这个问题的解法用歌诀形式表述出来。三人同行七十稀, 五树梅花廿一枝,七子团圆正月半,除百零五便得之。

歌诀的前三句给出了三组数,后一句给出了一个数:

3 70

5 21

7 15

105

三组数的共同特征是:70除以3余1,除以5、7余0; 21除以5余1,除以3、7余0; 15除以7余1,除以3、5余0。

首先程大位把不同的余数问题统一化为标准的余数问题。然后,他把复杂难解的问题化解为三个易解的问题。70、21、15分别是满足第一、二、三行条件的最小解。

2×70满足原题第一个余数条件,且被5、7整除。

3×21满足原题第二个余数条件,且被3、7整除。

2×15满足原题第三个余数条件,且被3、5整除。

统统相加得和:N=2×70+3×21+2×15=233。

N必然满足原题所有三个余数条件。但N不一定是最小的。歌诀最后一句“除百零五便得知”,这里“除”的意思是“减”,意即从233中减去3、5、7的最小公倍数105的倍数便得到23。这个23就是问题的最小解。这最后一句也可以理解为N除以105的余数就是问题的最小解。

中国古代数学有一个传统,总是以具体的数量关系表示一般的规律。把中国剩余定理译成数论术语就是:

设m₁、m₂、m₃是两两互质的正整数,对任意给定的整数a₁、a₂、a₃,必存在整数,满足:

x≡a₁ (mod m₁),

x≡a₂ (mod m₂),

x≡a₃ (mod m₃)。

并且满足上列方程组的解x(mod )是存在唯一的。

上面定理的表述是为方便或为忠于《孙子算经》,我们只写出含三个余数的情形,其实,这个定理对n个余数是通用的。

这个算法,给出了这类问题的非常简捷的一般解法。这个算法,具有非凡的数学思想,并对数论、代数产生了重要影响,中国称此算法为“孙子定理”,国际上称此为“中国剩余定理”。这是中国数学对世界数学最重要的贡献之一。中国剩余定理除本身的重要性之外,它还提示人们,要解决较复杂的问题,最好把它分解为几个易解的子问题;把问题各不相同的条件化成标准的条件,然后用标准的、统一的方法去处理。这是两种重要的数学思想。

南宋数学家秦九韶在他的《数书九章》中推广了“物不知数”问题,提出了计算“乘率”的方法——“大衍求一术”,使解决一次同余式问题的方法形成系统化的数学理论。

在西方,直到十八世纪,瑞士的欧拉与法国的拉格朗日才对同余式问题进行系统的研究。十九世纪的第一年,德国的高斯在《算术探究》一书中,才提出解决这类问题的方法——剩余定理,并给出了严格证明,被后人称为“高斯定理”。1852年英国基督教士伟烈亚力在《字林西报》上发表了《中国科学的记述》,介绍《孙子算经》中的“物不知数”题,并第一次解释了“大衍求一术”,并指出它实质上和高斯定理是一致的。当时,德国著名数学家康托尔称赞秦九韶是“最幸运的天才”,秦九韶推广了“中国的剩余定理”,为我国和世界数学史增添了光彩。

【附录】

一、【《孙子算经》简介】

《孙子算经》算经十书之一,是公元四世纪左右的数学著作,编撰年代不详。作者孙子,公元四世纪时人,生平不详。现传本分上、中、下三卷。上卷叙述度量衡制度、筹算记数和筹算乘除算法;中卷举例说明筹算分数算法、开平方和面积、体积计算;下卷是各种应用问题。中、下两卷共有各类算题64题。

《孙子算经》中“物不知数”问题及解法,属于一次同余式组,数论中称为“中国剩余定理”,也称“孙子定理”,秦九韶在此基础上,进一步研究,提出了“大衍求一术”。经我国历代数学家研究发展成完整严谨的理论与方法。

《孙子算经》是古代较为普及的算书。其中算题写得浅近有趣。例如“鸡兔同笼”(雉兔同笼)题远传日本(日本称为“鹤龟算”)。

“雉兔同笼”题为:“今有雉兔同笼,上有三十五头,下有九十四足。问雉兔各几何?”

二、【程大位简介】

程大位(1533年~1606年)字汝思,号宾渠。安徽休宁县率口(今为安徽省屯溪市前园村,其地土名渠沿)人,出身小商。据记载,程大位幼年聪敏好学,尤其喜爱数学,常“不惜重资,以购求遗书”,“遇方田、米粟、差分、少广、商功、均输、盈不足、方程、勾股诣书,辄厚资购得之。”二十岁左右,他利用外出经商的机会,“遨游吴楚,博访闻人志士”,接触了许多实际问题,深感学习数学之重要。程大位早年就外出经商,分析毫末,较量锱铢,持筹握算;加之好学不倦,因而从中养成了认真、细致、精核、严谨的精神。他不仅深入实际,搜集问题,而且帮助群众解决问题。

程大位谦虚好学,治学严谨。他利用“商游吴楚”的机会,遇有“睿通数学者,辄造请问难,孜孜不倦”。在他所著的《算法统宗》中,就刻有“师生问难图”,一个青年手持算盘,向老者请教,态度至诚。程大位四十岁后,倦于外游,便“归而覃思于率水之上余二十年”。认真钻研古籍资料,绎其文义,审其成法,遍取各家之长,加上自己的心得体会,程大位花了毕生精力,终于于明万历壬辰(1592年)写成巨著《直指算法统宗》一书,共十七卷。书中列举算题五百九十五个,都附有详细解法。其后六年,又对该书“删其繁芜,揭其要领”,写成《算法纂要》四卷,先后在当时的休宁县屯溪发行。

《算法统宗》是一本良好的教科书,它结构严谨,循序渐进,文字通俗,明白易懂,由浅入深,饶有风趣。《算法统宗》很注意形数结合,利用图形的变换来论证算法的依据,即所谓“演段根源图”。《算法统宗》中集录了许多“难题”,这些题目均以诗歌形式出现。如:当年苏武去北边 不知去了几周年 分明记得天边月 二百三十五番圆。再如:今携一壶酒 游春郊外走 逢朋添一倍 入店饮九斗 相逢三处店 饮尽壶中酒 试问能算士 如何知原有。

这一类题目,富有民族特色,能激发学习兴趣,开发智力,培养爱国主义思想感情,即使在今天也还值得推荐。

《算法统宗》集珠算之大成,在我国数学史上有重要地位。

在中国数学研究的低潮时期,一个小商人,能不惜资金购买算书,“殚思竭虑,精研其术”,终于克通其奥,写出引人注目的巨著,自己出资,锓锌以传,且不断增删,多次发行。这种精神,实为难能可贵。正因为如此,程大位被人推崇,赠给“隶首薪传”(隶首,传说为黄帝时人,始定算数。薪传,薪尽火传,比喻道术学业之师矛相传。语出《庄子》。)匾额,高悬大厅数百年。

* 本文由好玩的数学整理自网络

———END———
限 时 特 惠: 本站每日持续更新海量各大内部创业教程,永久会员只需109元,全站资源免费下载 点击查看详情
站 长 微 信: nanadh666

声明:1、本内容转载于网络,版权归原作者所有!2、本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。3、本内容若侵犯到你的版权利益,请联系我们,会尽快给予删除处理!