这篇文章主要为大家介绍了机器学习基础线性回归与岭回归算法详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

目录3.线性回归的算法二、权重的求解三、线性回归案例四、岭回归Ridge

岭回归的基本思想_岭回归和lasso回归_岭回归

有需要文章配套笔记、机器学习全套学习资料的可以按上方方式获取!

一、什么是线性回归1.线性回归简述

线性回归,是一种趋势,通过这个趋势,我们能预测所需要得到的大致目标值。线性关系在二维中是直线关系,三维中是平面关系。

我们可以使用如下模型来表示线性回归:y = wx+b(w是权重,x是特征,b是偏置项)

当有多个特征时,线性关系模型如下图所示:

岭回归和lasso回归_岭回归_岭回归的基本思想

岭回归_岭回归的基本思想_岭回归和lasso回归

2.数组和矩阵数组

数组可以是多维的,各个维度的数组表示如下:

0维:5

1维:[1,2,5,5,4,8]

2维:[[1,4,5],[1,4,7]]

3维:[[[1,4,5],[1,4,7]],[[1,4,5],[1,4,7]]]

数组运算有加法,乘法。具体计算可以在中尝试,数组是类型。3.

矩阵

矩阵特点:必须是二维,矩阵的运算满足了特定的需求。我们可以仅仅通过1步的矩阵乘法,就得出w1*x1+w2*x2+w3*x3这样模型的结果。

矩阵乘法的要求会涉及到矩阵的形状要求:m*n的矩阵 * n*p的矩阵,结果是m*p的矩阵

也就是说,第一个矩阵的列数,必须要和第二个矩阵的行数相同。

3.线性回归的算法

线性回归是一种迭代的算法。我们需要建立一个函数,对于每一个特征x(i)都有一个对应的权重w(i),两者相乘,并最终把所有的特征权重乘积求和,就是我们的目标结果。但如何寻找到最佳的权重,从而使得模型能够最好地拟合我们的样本呢?

线性回归的迭代算法的每次迭代,都会更新权重w(i)的值,使模型往靠近样本点的地方更加靠近,而损失函数,就是我们用来求得最佳权重的函数。

损失函数定义如下:

岭回归_岭回归和lasso回归_岭回归的基本思想

损失意思就是预测的各个目标值,与各个原目标值的差的平方和(误差平方和)。损失越小也就是预测值与原值越接近,效果越好。该方法也称为最小二乘法。当损失函数达到最小值时,所对应的权重w,就是我们的目标权重。

二、权重的求解1.正规方程

是求权重w的一种方法,适用于特征少的数据。用的比较少。

岭回归的基本思想_岭回归_岭回归和lasso回归

2.梯度下降

该方法通过指定学习率,并利用梯度,迭代更新权重。通常都使用这个方法。

岭回归_岭回归的基本思想_岭回归和lasso回归

正规方程API:..()

梯度下降API:..()

两个算法都可以通过.coef_得到回归系数,学习率是一个超参数,也可使用网格交叉验证进行调优。

三、线性回归案例1.案例概述

通过从中获取的“波士顿房价预测”数据进行房价预测,特征有很多,比如该镇的人均犯罪率、一氧化氮浓度、低收入人群占比等。我们对每一个特征都给出一个权重,通过算法,求得最佳的权重即可。

2.数据获取

导入数据代码:

3.数据分割

4.数据标准化

此处的数据,需要对特征数据以及目标值数据都进行标准化,并且需要用不同的标准。

导入标准化方法:from .

x实例化方法:std_x = ()

y实例化方法:std_y = ()

标准化:

= std_x.()

= std_x.()

= std_y.()

= std_y.()

5.模型训练

注意,训练后得出的目标值,是标准化后的,因此需要使用中的进行转换回原来的值。

实例化算法:lr = ()

将数据转为二维: = .(-1,1)

训练算法:lr.fit(, )

预测结果: = lr.()

结果转为正常结果: = std.()

6.回归性能评估

岭回归的基本思想_岭回归_岭回归和lasso回归

通过对预测值也真实值计算均方误差可得,API中,输入真实目标值,以及预测目标值即可(注意:输入的都是标准化之前的值。

API:..(, )

线性回归性能评估:(, )

以上为使用线性回归算法,对房价进行的预测。其他的算法,具体操作基本一致。

7.梯度下降与正规方程区别

岭回归_岭回归和lasso回归_岭回归的基本思想

特点:线性回归器是最为简单、易用的回归模型。 从某种程度上限制了使用,尽管如此,在不知道特征之间关系的前提下,我们仍然使用线性回归器作为大多数系统的首要选择。

小规模数据可以使用(不能解决拟合问题)以及其它

大规模数据需要使用梯度下降法,

四、岭回归.过拟合与欠拟合

欠拟合:一个假设在训练数据上不能获得更好的拟合, 但是在训练数据外的数据集上也不能很好地拟合数据,此时认为这个假设出现了欠拟合的现象。(模型过于简单)

解决方法:增加特征

过拟合:一个假设在训练数据上能够获得比其他假设更好的拟合, 但是在训练数据外的数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂)

解决方法:正则化

2.正则化

L2正则化是通过减少权重的方式,对模型进行优化,以解决过拟合的问题。该方法可以使得权重的每个元素都非常接近于0,参数变小,则模型变简单。从而达到解决过拟合问题的效果。

岭回归就是带有正则化的线性回归。

岭回归API:..Ridge

岭回归的基本思想_岭回归_岭回归和lasso回归

正则化中,alpha(或者)越大,说明对参数的惩罚越大,参数就越趋近于0。

岭回归优点:回归得到的回归系数更符合实际,更可靠。另外,能让估计参数的波动范围变小,变的更稳定。在存在病态数据偏多的研究中有较大的实用价值。

以上就是机器学习基础线性回归与岭回归算法详解的详细内容,更多关于线性回归与岭回归算法的资料请关注小编其它相关文章!

———END———
限 时 特 惠: 本站每日持续更新海量各大内部创业教程,永久会员只需109元,全站资源免费下载 点击查看详情
站 长 微 信: nanadh666

声明:1、本内容转载于网络,版权归原作者所有!2、本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。3、本内容若侵犯到你的版权利益,请联系我们,会尽快给予删除处理!